
1

Science Opportunity Analyzer - A Multi-Mission
Approach to Science Planning

Barbara A. Streiffert

Jet Propulsion Laboratory/
California Institute of Technology

4800 Oak Grove Dr, MS 301-250D
Pasadena, CA 91109-8099

 +1(818)354-8140
Barbara.Streiffert@jpl.nasa.gov

Carol A. Polanskey
Jet Propulsion Laboratory/

California Institute of Technology
4800 Oak Grove Dr, MS 301-250D

Pasadena, CA 91109-8099
+1 (818) 393-7874

Carol.A.Polanskey@jpl.nasa.gov

Taifun O’Reilly
Jet Propulsion Laboratory/

California Institute of Technology
4800 Oak Grove Dr, MS 301-250D

Pasadena, CA 91109-8099
+1(818)354-1170

Taifun.Oreilly@jpl.nasa.gov

 Joshua Colwell
Laboratory for Atmospheric & Space Physics

University of Colorado, 392 UCB
Boulder, CO 80309-0392

+1(303)492-6805
Joshua.Colwell@lasp.colorado.edu

Abstract—In the past Science Planning for space missions
has been comprised of using ad-hoc software tools collected
or reconstructed from previous missions, tools used by other
groups who often speak a different “technical” language or
even “the backs of envelopes.” In addition to the tools being
rough, the work done with these tools often has had to be
redone or at least re-entered when it came time to determine
actual observations. Science Opportunity Analyzer (SOA), a
Java-based application, has been built for scientists to
enable them to identify/analyze observation opportunities
and then to create corresponding observation designs for
orbiting, astronomical (telescope), and flyby missions.

TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. SCIENCE OPPORTUNITY ANALYZER 1
3. INITIALIZATION (GLOBAL/KERNELS)........... 2
4. OPPORTUNITY SEARCH 2
5. OBSERVATION DESIGN 5
6. CONSTRAINT CHECKING 8
7. DATA OUTPUT.. 10
8. COMMUNICATION .. 11
9. SUMMARY .. 11
10. CONCLUSION.. 12

1. INTRODUCTION1
Spacecraft mission operations is comprised of diverse teams
competing for the limited resources of a spacecraft. Each
team has its goals and its “own language.” Flight teams talk
about spacecraft commands and command parameters.
They’re involved with hardware components and computer
transactions. Science teams are concerned with science
objectives, physical phenomena, celestial bodies and their

10-7803-7651-X/03/$17.00 © 2003 IEEE
2IEEAC paper #1448, Updated October 22, 2002

instruments on the spacecraft. What has been missing is a
software tool that allows scientists to plan and develop their
observations using the terms that are meaningful to them. At
the same time this tool must communicate with project
software in terms of commands and command parameters.
Finally, the tool must be able to support a wide-variety of
missions. Science Opportunity Analyzer (SOA), a Java-
based application, has been built to meet these needs.

2. SCIENCE OPPORTUNITY ANALYZER
SOA supports science mission operations for orbiting,
astronomical (telescope), and flyby missions. At Jet
Propulsion Laboratory (JPL) mission operations is divided
into two basic categories: mission planning and mission
sequencing. Mission planning starts with very high level
plans having blocks of time set aside for spacecraft
trajectory correction maneuvers, for observations, and for
sending data to earth for an entire mission and ends with the
building of a detailed set of spacecraft activities and science
observations. Mission sequencing takes those activities and
observations and turns them into spacecraft commands.
SOA can be used for all aspects of the science portions of
mission planning, but is primarily for use towards the end of
that phase where the scientist is determining and developing
science observations. SOA is the first multi-mission tool to
allow the science user to enter those observations into the
front-end of the spacecraft command pipeline using science
friendly terminology and an intuitive graphical user
interface and then send the observations to downstream
software that will turn them into spacecraft commands. It
has been built with communications to other “uplink”
software tools in mind.

In addition to allowing the observation to be sent to
downstream software, SOA permits scientists to look for
opportunities of geometric interest (Opportunity Search). It
also contains features to allow them to analyze their

2

observation to see if the observation meets both the desired
science objectives and with reality. Various views can be
displayed at user-selected times to examine the geometry of
a user-selected target (Visualization). The user can also
view that information with one or more instrument fields of
view projected onto the target. A field of view (FOV) is one
of the apertures of a given instrument. If the display of the
selected time is promising, the scientist can begin to create
an observation and then view the observation (Observation
Design). If further investigation of the observation is
needed, the user can get observation or trajectory related
data to help in making the decision whether to keep this
observation or to change to another time (Data Output). The
data regarding the spacecraft trajectory can be retrieved at
any point in the process. Finally, the scientist can check the
observation to make sure that it does not violate any
constraints such as “too much bright light exposure” on a
sensitive instrument (Constraint Checking). Along with the
ability to communicate with other tools (Communication),
SOA provides a convenient package of functional
capabilities in one generic multi-mission tool.

In the following paragraphs an example of one path that a
user will typically take is presented along with pictures of
the screen displays that the user will see. This path can have
variations based on the user’s needs and desires, but the path
is ultimately one that will end in a science observation that
is placed into the plan of activities to be sent to the
spacecraft. The path will be called the Science Observation
Planning Process in this paper.

SOA is configurable to a specific mission. This process is
called “adaptation”. Adaptation adds the mission specific
data for SOA to work with. This mission specific data will
include flight rules, observation types, physical phenomena
models, celestial body data, instrument data, spacecraft-
specific data and a spacecraft trajectory. Much of this data
can be provided through the use of JPL navigation files.

3. INITIALIZATION (GLOBAL/KERNELS)
Step 1—
(Required) The user runs an SOA configuration file.
(Note: The configuration file is a Java Bean shell script that
is executed by the Java Runtime Environment.)

Even though initializing SOA isn’t part of the Science
Observation Planning Process it is a necessary step for SOA
to have data to work with. The user can select, edit or run a
configuration file. The configuration file selection is under
the Global/Kernels tab. The configuration file determines
the spacecraft, spacecraft data and spacecraft trajectory to
use, instrument data, planetary constants information,
opportunity searches that are available, many of the defaults
in SOA including the seeding of the default time windows,
and other initialization components. The configuration file
is a Java Bean shell script and as such is executed by the
Java Runtime Environment. Once the configuration file is
run, the color-coding of the SOA main screen changes from
red to various other colors so that the user can tell visually if

a necessary item is missing. Figure 3.1 shows SOA prior to
running the configuration file (all buttons and tabs are red)
and Figure 3.2 shows SOA after running the configuration
file (all buttons and tabs have changed color and none are
still red).

Often this configuration file will be built by the project as
part of the adaptation of SOA. In this case, the user will
simply run the file that is delivered with the software. The
SOA User’s Guide that is delivered with SOA at each
release describes in detail how to modify the configuration
file. The SOA User’s Guide has been written by a scientist
to ensure that the science user community can easily
understand it.

4. OPPORTUNITY SEARCH
Step 2—
(Required) The user finds one or more windows of
opportunity for an observation based on specified geometric
criteria.

Initially, in the Science Observation Planning Process, the
scientist wants to find observation opportunities that meet
specific geometric criteria. The Opportunity Search tab
allows the user to find when the desired geometric criteria
are met. On this display (Figure 4-1) the scientist either
selects to build a search query or to load previously built
queries from a file. If the search query is new the user is
presented with the search query builder window
(Figure 4-2). The list of available queries is loaded at
runtime and appears in the upper right hand side of the
query builder window (Figure 4-2). The list has over 30
query types that include such things as eclipses, distance
from a specified celestial body, periapse events, transits, etc.
The user selects the desired query from the list and simply
drags it into the graphical query window. Now the query’s
properties (such as search time window, celestial bodies
involved, etc.) can be customized for the selected search.
Once the search query is built the user selects it and presses
a button for the search to begin.

SOA allows the user to create either a simple search query
or a complicated one. The user can use the relational
operators of “and,” “or,” or “not” to create complex queries.
The graphical query window helps the user to keep track of
the relationships by building a tree so that the user can see
their relationship. The scientist doesn’t have to remember
complicated command line syntax for either type of search
query. That complexity is handled by SOA. SOA creates the
correct command line syntax for the search engine specified
by the scientist and sends the information directly to that
search engine via inter-process communication.

SOA has two search engines that process the search queries.
These search engines work as root finders on continuous
functions. Some queries result in a single time (like a
periapse) and others result in time windows (like an
occultation). The search engine returns the resultant time(s)
when the search criteria are met. The windows of

3

opportunity are displayed for the user. The user now has a
choice of selecting to see a display of that time, save the
results to a file, see data related to a result window, begin an
observation design or do any combination of these four.
SOA always allows the user to save his/her work to files for
future recall.

The delivered SOA currently contains all of the search
criteria types. Generally, a mission will not have to perform
any adaptation for this area of SOA. If a search doesn’t
apply to a given project, it can simply be removed. A project
can also use a different search engine, but then more
adaptation work will have to be done. That work is
described in the SOA Adaptation Guide delivered with the
software.

Figure 3-1. Initial SOA Global/Kernals Tab display with Configuration File Selection Box open.

Figure 3-2. Global/Kernals Tab display after configuration file has been run.

4

Figure 4-1. Opportunity Search Tab display with the Enceladus Flyby query selected and
the resultant search windows displayed.

Figure 4-2. Opportunity Search Query Builder display with an Enceladus flyby query.

5

5. OBSERVATION DESIGN
Step 3—
(Required) The user selects a time window and begins to
design an observation.

Step 4—
(Optional) The user views the design in a visualization
window.

Prior to this step the user may have selected a time from the
Opportunity Search Results and selected to view an SOA
display at that time (as stated in the previous section), but
the user may have created the search criteria in such a way
that any resultant window is a candidate to use to perform
the observation design. The Observation Design tab allows
the scientist to begin the design.

The scientist can select to simply look at a time with a
single instrument field of view (FOV) to get a visual idea of
the “landscape” or he/she can select to create one of the four
different types of observations. The simple view is called a
“scoping” activity and shows the user a view from a specific
spacecraft attitude. This type of observation usually doesn’t
contain enough information to be sent to downstream
software, but it can give the scientist an idea of whether or
not this observation is worth pursuing. It has very few
properties (parameters) and requires very little of the user’s
time to specify while providing the user with a significant
amount of visual information. Figure 5-1 shows the
Observation Design display with a scoping-level activity
specified.

Figure 5-1. The Observation Design Tab display showing an Enceladus scoping level observation with
constraint violations (the orange button with the date in the center of the display).

6

At any point the scientist can begin or continue working on
a previously saved observation design. The four basic types
of observations are:

1. Start Stop Mosaic
2. Continuous Scan
3. Roll Scan
4. Stare

A Start Stop Mosaic observation is one in which the
spacecraft or scan platform moves to a series of locations,
stops (or dwells) at each location and performs an
observation at each of these locations. Then it moves to the
next location and performs the next observation. A remote
sensing instrument such as a camera normally uses this type
of observation. The Start Stop Mosaic has also been called a
box scan or an N by M mosaic. The Continuous Scan
observation is similar to the Start Stop Mosaic, but for this
observation the spacecraft or scan platform is continuously
moving while observations are being performed. Remote
sensing instruments such as spectrographs or spectrometers
often use this type of observation. The Roll Scan
observation is an observation where the spacecraft generally
rolls about a single axis. However, it is conceivable that the
rolling could be about some sort of platform or other
mounted device that allowed an instrument the freedom to
spin. Fields and Particles In Situ instruments extensively
utilize this type of observation. Finally, the Stare
observation is one where the spacecraft or scan platform
tracks a single target direction for the duration of the
observation. Instruments of all types use this category of
observation.

Each of these observations has its own set of properties
(parameters). However, some of the properties are common
to all such as the start time of the observation, the planned
duration of the observation, the target, the observer and any
time margins used to make sure that the observation fits into
its allotted time frame. Other properties are specific to the
type of observation. Some examples of properties for
specific observation types are:

1. Start Stop Mosaic: the number of footprints per scan
and the total number of footprints.

2. Continuous Scan: the number of scans (or rows).
3. Roll Scan: the roll axis.
4. Stare: the actual stare duration.

Projects may have their own variations of these activities or
maybe even an activity type that is completely different
from the ones provided. SOA has been built using a
hierarchical structure so that new or variations of existing
observation types can be created. Performing observation
adaptation is also described in detail in the SOA Adapter’s
Guide.

After the scientist has filled in the properties, he/she will
want to view a display of the celestial bodies and the
observation. SOA has four types of display: 3-dimensional
perspective projection, 3-dimensional arbitrary observer,

2-dimensional sky map and 2-dimensional trajectory view.
The 3-dimensional perspective projection (Figure 5-2) is a
3-dimensional view of the target from the point of view of
the observer. The 3-dimensional arbitrary observer is a 3-
dimensional view that is a parallel projection of the target
from an observer that can be arbitrarily placed in space. The
2-dimensional sky map is an equidistant cylindrical
projection of the celestial sphere as viewed from the
spacecraft. Finally, the 2-dimensional trajectory view is a
view of the spacecraft trajectory around a target in either the
ecliptic or the equatorial plane. If the target has satellites
their orbits can also be shown. Each of these displays can be
animated over the time span of the observation. The
scientist can choose to see all of the fields of view that form
the observation at one time or to see them as they are
performed during the animation. The scientist can also look
at more than one view at a time on a single screen
(Figure 5-3) or have multiple screens displaying the same or
different views (Figure 5-4). Each viewer window has data
to allow the user to obtain more information about the
observation quickly, and also has controls to allow the user
to customize the view of the observation as well as to
animate it.

On the left-hand side of the visualization window the data
display gives the scientist information such as the range to
the target and the right ascension and declination of various
points of interest. Below the data display, the user can use
the Settings Panel to make display objects visible or
invisible. Additionally, the user can also change properties
of display objects such as color, line width, font, etc. as they
are applicable for that object. The last items on the left hand
side are the animation controls. The user can control the
animation through the use of these text entry slots and
buttons.

On the right hand side the user has a series of sliders. These
sliders allow the scientist to control the amount of rotation
in x, y and z of the current view. The bottom slider allows
the user to zoom in or out on the current display. If the
sliders are not available for use in a particular view (such as
the 2-dimensional trajectory plot) they are grayed out.

Most of the needed basic graphics primitive objects are
provided currently in SOA. A hierarchical structure similar
to the one provided for other adaptable items is available for
the graphics primitive objects as well. The low-level
graphics primitive objects can be combined to form most
any display object that is needed by a project. Currently,
meshes and 3-dimensional volume rendering objects are not
available, but those objects are to be developed for future
versions of the software.

A scientist can remain in the observation design area until
the observation is completed and all of the observation
objectives are met or he/she can proceed to the next step at
any point while creating the observation and then return to
observation design as needed. The next step in the process is
constraint checking.

7

Figure 5-2 A 3-D perspective view of the Enceladus observation.
The yellow rectangle around Enceladus is the field of view of a spectrograph.

Figure 5-3. A 3-D perspective view and a 3-D arbitrary observer view of closest approach to Enceladus. Note that the
Cassini spacecraft appears in the 3-D arbitrary observer view as well as the spacecraft trajectory.

8

Figure 5-4 Two-viewers are displayed. The top one shows a 3-D Arbitrary Observer view with Saturn as the target.
It shows the spacecraft trajectory by Enceladus. The bottom one shows the 2-D SkyMap view at this time.

6. CONSTRAINT CHECKING
Step 5—
(Required) The user checks to see if any constraints have
been violated.

Now the scientist wants to make sure that the observation
meets with the rules that the project has provided. These
rules are often called flight or mission rules. Rules are
checked at the observation level. In downstream software
used for sequencing the rules are checked at a command
level. In SOA rules come in two varieties: geometric or
dynamic. The geometric rules are generally ones that have
to do with exclusion zones (such as the avoiding pointing a
delicate camera lens at the Sun). The dynamic type has to do
with illegal spacecraft states (such as requiring the
spacecraft to exceed its maximum turn rates).

The exclusion zone rules have several flavors. The zone is
generally an angle that forms a region where there’s a bright
body that must be avoided in order not to damage an
instrument. Sometimes if the instrument is far enough away
from the bright body, then the light is not harmful. In this
case the rule can specify both the angle and the distance that
are to be avoided. Finally, the instrument may only be
harmed if it is exposed for a given period of time. In this
case exposure times less than the specified time are not

harmful. These rules can be created using any combination
of the three items: angle, distance, and exposure time.

The dynamic rules deal with placing the spacecraft in an
illegal state. For SOA generally that means exceeding
maximum spacecraft rates and/or accelerations or not
meeting minimum spacecraft rates and/or accelerations.
These rates can apply to the spacecraft, a scan platform or
an instrument. Individual rules and rates can be created for
each of the pieces of hardware that must be checked.

Before actually selecting to check the rules, they have to be
built. The user can select to build new rules or use the ones
that the project has supplied through adaptation. The rules
are created using a drag-and-drop builder screen
(Figure 6-1) similar to the search criteria builder in
Opportunity Search. The rule type is selected and dragged to
the graphical rule-building window. To enter the rule
values, the user just clicks on the graphical rule box and the
specifics for that rule can be entered at the bottom of the
screen. In addition to creating simple rules, SOA also allows
the user to create complex rules using the logical operators
of “and” and “or.”

In the main Rule tab (Figure 6-2) the user has the option of
enabling all of the rules to be checked, none of the rules to
be checked or some but not all of the rules to be checked.
After the rules have been built and the ones that are to be

9

checked have been enabled, the user can save these rules to
an XML formatted file for future recall. The project may
have delivered a project set of rules and the user may not
need to build or enable any rules.

If the user wishes to create additional rules, the user may do
so and create his/her own file that can then be loaded in
addition to the project’s rules . The user simply adds this
new set to be loaded using the configuration file.

Figure 6-1. The Flight Rule Builder display shows an Angle Rule being built.

Figure 6-2 The Flight Rule Tab display shows the Enceladus Angle Rule selected to be checked when the
Check Constraint button is selected. Figure 5-1 shows the results of checking this flight rule.

Once the rules have been loaded, the user simply returns to
the Observation Design tab and presses the constraint check
button. SOA checks all of the enabled constraints and
returns with a message that either violations were or were
not found. If violations are found, they are listed in the
constraint log that pops up when the orange constraint

violation button is pressed (see Figure 5-1 in the previous
section). If no violations are found the constraint violation
button stays gray and says “no violations.” In addition, if the
user displays a visualization of the observation, the
footprint(s) that are in violation are indicated in red.

10

In most cases projects can use the rule builder screen to do
all of their adaptation. One project using SOA has been able
to create 20 rules in one hour with the rule builder. If the
project has rules that are not supported by the rule builder,
SOA provides a similar hierarchical structure in order for
project adapters to add new rule types or new rule building
blocks.

7. DATA OUTPUT
Step 6—
(Optional) User selects and views output data to ensure
observation viability

At any point in the process the scientist can view output data
produced by SOA. The Data Output tab (Figure 7-1) allows
the user to select the time, the type and kinds of output data
to be viewed as well as allowing the selection of viewing the
data in tabular or graphical form. There are three types of
data output: (1) spacecraft trajectory related data, (2)
opportunity search results data, and (3) observation related
data.

The Spacecraft Trajectory Related Data option allows the
user to select output that relates to data that can be
determined without the user having to specify an instrument
field of view (FOV). These data can be determined by
simply knowing the spacecraft path. Certain physical
phenomena model information, the sub-spacecraft point and
other information that doesn’t require FOV information can
be requested.

Opportunity Search Results Related Data option allows the
user to select data that pertains to the results of a particular
opportunity search criteria. Again this information doesn’t
require knowing a particular instrument FOV to obtain.

The Observation Design Related Data option allows more
information to be requested. In this option the user can
specify data that is calculated based on the instrument FOV
such as emission angle. The emission angle (or viewing
angle) is an angle calculated between a FOV intercept with
the target and the spacecraft’s intercept with the target. In
order to calculate this information, the observer field of
view data must be known.

All three types of data can be requested in a tabular file
format. The resultant file can be placed in a commercial
spreadsheet and analyzed. The data can also be presented in
a graphical format (Figure 7-2). In this case the scientist has
a choice of how the graphs are to be arranged. The choices
are: stack plot (one or more plots per window), x/y or x/y/z
plot (a single plot per window) or all-in-one plot (all data
items appear in a single plot in a single window).

As with all of SOA the project can choose to use the data
output items that SOA has provided or the project adapters
can create additional types of data output and hook those
into the hierarchical structure that SOA uses. The data
output that can be specified currently in SOA is generally
sufficient for most projects.

Figure 7-1. The Data Output Tab display shows the data items available for selection in
the area of Spacecraft Trajectory Related Data.

11

Figure 7-2. The Graphing/Plotting tool shows x/y data in a stacked graph.

8. COMMUNICATION

Step 7—
(Required) The user saves the observation for further recall
and sends it to downstream software to be added to the plan
of spacecraft activities.

At this point the observation has been designed and checked
against both the user’s requirements and against constraints.
It meets the science objectives and is ready to be saved for
further recall. SOA allows the scientist to save the
observation in multiple formats. The choices are:

1. SOA format
2. Downstream software format that has been specified in

a JPL interface control document.
3. Pointing information format

SOA can read and write all three formats. SOA can, of
course, process its own file data. The downstream software
format saves information to a file that downstream legacy
software can change into commands. The pointing
information format is a binary file that is widely used called
a C-kernel. This file can be used to exchange information
among scientists.

After the observation has been saved, it is time to add it to
the plan of activities that are going to the spacecraft. SOA is
one of the first software tools to be created with communi-
cation to downstream software as part of its design. SOA
uses both interprocess communication and files to commu-
nicate with downstream planning and sequencing software.
The user simply uses the Communications tab (Figure 8-1)
to set-up an interprocess communications link with the
planning software or creates a file that can be read by the
legacy sequencing software.

This area requires the most adaptation. In order for the
information to be sent to the downstream software,
adaptation methods need to be written so that all the tools
understand the data that is being sent. An SOA observation
will correspond with a specific project “spacecraft activity”
that the planning and sequencing software understands. A
correspondence between an SOA observation and this
project-specific spacecraft activity is created using the same
hierarchical structure that SOA has used throughout for
adaptation. This area is explained in detail in the Adapter’s
Guide.

12

Figure 8-1. The Communications Tab display shows the communications connection any message
being sent to downstream software using inter-process communications.

9. SUMMARY
SOA provides a full suite of tools to support scientists in
building their observations. To recap the typical Science
Observation Planning Process consists of the following
steps:
1. The user runs an SOA configuration file to select the

spacecraft and spacecraft trajectory data to be used.
2. The user finds one or more windows of opportunity for

an observation based on geometry criteria using SOA’s
Opportunity Search capability.

3. The user designs the observation using the SOA
Observation Design capability. At this point the user
will often want to see Visualization displays. The user
may even want to view an animation of the observation.

4. The user can also check to see if any constraints have
been violated with this observation using the SOA
Constraint Checking capability. The constraints are
checked at the observation level against either
geometric (i.e., Sun exclusion zones) or dynamic (i.e.,
spacecraft rates) rules.

5. At any point in this process the user can view
associated data such as a phase angle using the Data

Output capability. Data can be viewed in a tabular
format, graphically or both.

6. The scientist saves the observation for future recall.
Once the observation meets the science criteria and
doesn’t violate constraints, it can be sent downstream to
planning software and command-level geometric
checking software using SOA’s communication
capability.

SOA allows scientists to work in each of these areas
emphasizing the data that are important to them and hiding
details that are necessary to make the software work
correctly, but are irrelevant to scientists.

In addition, each of the above areas of SOA can be adapted
to meet the needs of a specific project. However, support in
the software is provided so that adaptation can be minimal
from project to project.

10. CONCLUSION
From the very beginning SOA was designed with the user in
mind. Extensive surveys of the potential user community

13

were conducted in order to develop the software
requirements. Throughout the development period, close
ties have been maintained with the science community to
insure that the tool maintains its user focus. Although
development is still in its early stages, SOA is already
developing a user community on the Cassini project that is
depending on this tool for their science planning. There are
other tools at JPL that do various pieces of what SOA can
do; however, there is no other tool which combines all these
functions and presents them to the user in such a convenient,
cohesive and easy to use fashion.

REFERENCES
[1] Carol Polanskey, Barbara Streiffert, Taifun O’Reilly, and
Joshua Colwell, “Advances in Science Planning,” 2002 AIAA
Space Operations Conference Proceedings, Oct. 8–11, 2002.

[2] Barbara Streiffert, Carol Polanskey, Taifun O’Reilly, and
Joshua Colwell, “Science Opportunity Analyzer A Multi-
Mission Tool for Planning,” 2002 Core Technologies for
Space Systems Conference Proceedings, Nov. 19–21, 2002.

ACKNOWLEDGEMENTS
The work described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

We would like to thank the Cassini Project for their support.

Barbara Streiffert is a Senior Systems and
Software Engineer at Jet Propulsion
Laboratory specializing in the development
of innovative software approaches for use in
ground data systems for spacecraft
missions. She has worked in all aspects of
systems and software development for commercial, military
and aerospace projects. She has a B.S. in Applied
Mathematics from Metropolitan State College, a B.A. in
English from the University of Colorado and 20 years
experience in software development.

Carol Polanskey is a Senior Science
Systems Engineer and Technical Manager
at Jet Propulsion Laboratory specializing in
science planning for interplanetary
spacecraft missions. In addition to her work
on SOA, she has been a co-investigator on the Galileo
project (an orbiting mission to Jupiter) where she and her
team were responsible for science data acquisition and
health of the magnetometer and dust detector (two of
eleven) science instruments on the Galileo spacecraft. She
has 14 years experience in spacecraft operations. She has a
B.S. in Physics and Astronomy from Pennsylvania State
University an M.S. in Geophysics from California Institute
of Technology and a Ph.D. in Planetary Science from
California Institute of Technology.

Taifun O'Reilly is a Senior Software
Engineer at Jet Propulsion Laboratory
specializing in new software solutions to
existing ground data system problems.
She has created the intuitive, easy to use
graphical user interface for SOA as well as much of the
object oriented hierarchical structure of SOA. She has
worked in all aspects of software development for
commercial, military and aerospace projects. She has a B.S.
in Mathematics from California State University and over
20 years experience in software development.

Josh Colwell is a planetary scientist
specializing in the origin, evolution, and
dynamics of planetary rings, comets, and
asteroids. He has flown two experiments on
the space shuttle and has an ongoing
microgravity research program on
collisions in the solar system. He led the development of the
Cassini Sequence Planner software (CASPER) for the
Cassini mission to Saturn that served as a prototype for
SOA. In addition to software consulting for JPL he teaches
astronomy at the University of Colorado. He has a B.S. in
Physics from Steston University and a Ph.D. in
Astrophysical, Planetary, and Atmospheric Sciences from
the University of Colorado, Boulder.

